- 최윤재·홍화정 교수 연구팀, 인공지능 조교(VTA) 개발
- 수강생들 이론과 실습 관련 질의응답에 24시간 대응
이번 연구를 수행한 KAIST 연구진. 권순준(왼쪽부터) 박사과정, 남수연 석사과정, 임현승 박사과정, 홍희정 교수, 최윤재 교수.[KAIST 제공]
[헤럴드경제=구본혁 기자] “조교에게 질문하기 망설여졌던 부분들도 부담 없이 물어볼 수 있었고, 오히려 더 많이 질문하면서 수업 이해도가 높아졌다.”(양지원 KAIST 박사과정 학생)
KAIST는 김재철AI대학원 최윤재 교수와 산업디자인학과 홍화정 교수 공동 연구팀이 대형 강의에서도 학생 개개인에게 맞춤형 피드백을 제공할 수 있는 ‘인공지능 조교(Virtual Teaching Assistant, 이하 VTA)’를 개발해 실제 강의에 성공적으로 적용했다고 5일 밝혔다.
이번 연구는 2024년 가을학기 석·박사과정 학생 477명이 수강한 김재철AI대학원의 ‘인공지능을 위한 프로그래밍’ 교과목에 VTA를 도입, 그 효과와 실용 가능성을 실제 교육 현장에서 대규모로 검증한 국내 최초 수준의 사례다.
개발된 인공지능 조교는 일반적인 챗GPT나 기존 챗봇과는 다른, 수업에 특화된 에이전트다. 연구팀은 강의 슬라이드, 코딩 실습 자료, 강의 영상 등 방대한 수업 자료를 자동으로 벡터화하고, 이를 기반으로 질의응답이 이뤄지는 검색증강생성 구조를 구현했다.
인공지능 조교 내부 구성도.[KAIST 제공]
학생이 질문을 하면, 시스템은 질문의 맥락을 바탕으로 가장 관련된 수업 자료를 실시간으로 검색한 뒤, 응답을 생성한다. 이 과정은 단순한 대형언어모델(LLM)을 호출하는 것이 아니라, 수업 내용에 대응하는 자료 기반 질의응답으로 설계, 학습 신뢰도와 정확도를 모두 확보한 지능형 시스템이라 할 수 있다.
해당 수업의 책임 조교였던 권순준 박사과정은 “VTA 도입 이후에는 학생들이 반복 질문을 줄이고 꼭 필요한 질문에 집중하면서, 조교로서의 부담이 눈에 띄게 줄었고 보다 고차원적인 학습 지원에 집중할 수 있었다”고 전했다.
실제 작년 수업 대비 조교가 직접 응답해야 하는 질문량은 약 40%가량 감소한 것으로 나타났다.
14주간 운영된 VTA는 전체 수강생의 절반 이상이 실제로 활용했으며, 총 3869건에 달하는 질의응답이 기록됐다. 특히 인공지능 비전공자나 사전 지식이 부족한 학생일수록 VTA 사용 빈도가 높게 나타났으며, 이는 VTA가 학습 보조 수단으로 실질적인 도움을 주었음을 시사한다.
또한 분석 결과, 학생들은 인간 조교보다 VTA에게 이론적 개념에 대한 질문을 더 자주 하는 경향을 보였다. 이는 학생이 평가받거나 불편함을 느끼지 않고 자유롭게 질문할 수 있는 환경을 인공지능 조교가 제공함으로써, 학습 참여를 보다 적극적으로 유도한 것으로 해석된다.
학생들이 인공지능 조교를 활용하고 있는 모습.[KAIST 제공]
수업 전·중·후 3회에 걸친 설문조사 결과, 학생들은 VTA에 대해 초기보다 높은 신뢰도와 응답 적절성, 편안함을 보고했다. 특히 인간 조교에게 질문을 주저한 경험이 있는 학생들일수록 인공지능 조교와의 상호작용에서 더 높은 만족도를 나타냈다.
최윤재 교수는 “인공지능 기술이 수강생과 강사진 모두에게 실질적 도움을 줄 수 있다는 것을 확인했다는 데 연구의 의의가 있다. 앞으로 더욱 다양한 수업으로 해당 기술이 확대되기를 기대한다”고 말했다.
연구팀은 시스템의 소스코드를 개발자들의 플랫폼 깃허브(GitHub)에 공개해 다른 교육기관과 연구자들이 이를 바탕으로 맞춤형 학습 보조 시스템을 개발하고 교육 현장에 적용할 수 있도록 지원하고 있다.
Copyright © 헤럴드경제. 무단전재 및 재배포 금지.
매주 일요일 밤 0시에 랭킹을 초기화합니다.